Inhibition of Na⁺/H⁺ exchange reduces Ca²⁺ mobilization without affecting the initial cleavage of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets

W. Siffert, G. Siffert, P. Scheid, T. Riemens⁺, G. Gorter⁺ and J.W.N. Akkerman⁺

Institut für Physiologie, Ruhr-Universität, 4630 Bochum, FRG and [†]Department of Haematology, University Hospital, NL-3511 GV Utrecht, The Netherlands

Received 11 November 1986

Stimulation of human platelets increases cytoplasmic pH (pH_i) via activation of Na⁺/H⁺ exchange. We have determined the effect of inhibiting Na⁺/H⁺ exchange on (i) thrombin-induced Ca²⁺ mobilization and (ii) turnover of ³²P-labelled phospholipids. Blocking Na⁺/H⁺ exchange by removal of extracellular Na⁺ or by ethylisopropylamiloride (EIPA) inhibited Ca²⁺ mobilization induced by 0.2 U/ml thrombin, whereas increasing pH₁ by NH₄Cl enhanced the thrombin-induced increase in cytosolic free Ca²⁺. The effect of EIPA was bypassed after increasing pH₁ by moneasin. The thrombin-induced cleavage of phosphatidylinositol 4,5-bisphosphate (PIP₂) was unaffected by treatments that blocked Na⁺/H⁺ exchange or increased pH₁. It is concluded that activation of Na⁺/H⁺ exchange is a prerequisite for Ca²⁺ mobilization in human platelets but not for the stimulus-induced hydrolysis of PIP₂.

Na⁺/H⁺ exchange; Amiloride; Phosphoinositide; Quin 2; Ca²⁺ mobilization; Platelet activation

1. INTRODUCTION

The stimulation of platelets by thrombin results in a rapid phosphodiesteratic cleavage of PIP₂ [1]. This reaction which is activated by phospholipase C leads to the formation of two important second messengers: IP₃, which mobilizes Ca²⁺ from intracellular, non-mitochondrial pools [2,3], and 1,2-diacylglycerol which activates protein kinase C [4]. Another early event following stimulation of platelets consists of activation of a Na⁺/H⁺ antiport [5] with subsequent cytoplasmic alkalinization [6]. Although it has been demonstrated that

Correspondence address: W. Siffert, Institut für Physiologie, Ruhr-Universität, 4630 Bochum, FRG

Abbreviations: [Ca²⁺]_i, cytosolic free Ca²⁺ concentration; Ca₀²⁺, external Ca²⁺; Na₀⁺, external Na⁺; IP₃, inositol 1,4,5-trisphosphate; PIP₂, phosphatidylinositol 4,5-bisphosphate; PIP, phosphatidylinositol 4-phosphate; PI, phosphatidylinositol; PA, phosphatidic acid; EIPA, ethylisopropylamiloride

blocking Na⁺/H⁺ exchange in platelets by either removal of extracellular Na⁺ or by amiloride also inhibits the production of arachidonic acid, secretion of granule contents, and aggregation [7–9], the molecular basis of how changes in cytoplasmic pH (pH_i) can modulate platelet activation has remained obscure. This study aimed at investigating whether Na⁺/H⁺ exchange might affect platelet activation via a possible effect on the metabolism phosphoinositide turnover and Ca²⁺ mobilization.

2. EXPERIMENTAL

2.1. Preparation of platelets and determination of $[Ca^{2+}]_i$

Freshly drawn citrated blood was centrifuged at $200 \times g$ for 15 min to obtain platelet-rich plasma (PRP). The PRP was then incubated for 20 min with $20 \,\mu\text{M}$ quin2 acetoxymethyl ester (Sigma) at room temperature. After addition of $0.1 \,\mu\text{M}$ forskolin (Calbiochem, final conc.) the quin2-loaded cells were centrifuged at $700 \times g$ for 20 min. The

pellet was resuspended into 1 ml Hepes buffer (140 mM choline chloride, 5 mM KCl, 1 mM MgSO₄, 10 mM Hepes, 5 mM glucose, pH 7.5), and 0.1 µM forskolin and 10 µM EGTA (final conc.) were added. Finally, the suspension was passed through a Sepharose 2B column (Pharmacia) pre-equilibrated with the same buffer (without forskolin) in order to remove extracellular quin2 as well as extracellular Na+ (Na₀⁺). Subsequently, cell suspensions were diluted in Hepes buffer (37°C) containing either 140 mM Na⁺ or 140 mM choline. 1 mM CaCl₂ or 2 mM EGTA was added as required and the cells were pre-equilibrated in a cuvette at 37°C for 5 min before addition of 0.2 U/ml thrombin (bovine; Sigma). The quin2 fluorescence was measured in a Perkin Elmer MPF-3 spectrofluorometer, the experimental details for calibration of the quin2 signals being identical to those described in the literature [10,11].

2.2. Determination of ³²P-labelled phospholipids PRP was incubated with ³²P (0.1 mCi/ml) for 1 h at 37°C. Thereafter, gel-filtered platelets were prepared as described above. Aliquots (1 ml) of platelets were incubated at 37°C and stimulated with 0.2 U/ml thrombin (bovine; Sigma). The reaction was stopped at various time intervals after stimulation by addition of 4 ml cold (0°C) chloroform/methanol/13 M HCl (100:50:1, v/v). The phospholipids were extracted and subsequently separated by high-performance thin layer chromatography as described by Jolles et al. [12]. Labelled lipids were visualized by overnight radioautography, scraped from the plates and counted for radioactivity according to standard procedures.

2.3. Modulation of Na⁺/H⁺ exchange and cytoplasmic pH

In some experiments Na⁺/H⁺ exchange was inhibited by isotonic replacement of NaCl by choline chloride. In other experiments Na⁺/H⁺ exchange was blocked by amiloride (obtained as a gift from MSD Sharp & Dohme, Munich, FRG) or by EIPA which has a higher affinity towards the Na⁺/H⁺ exchanger than amiloride [13].

Cytoplasmic alkalinization was induced by addition of 10 mM NH₄Cl to the platelet suspensions or by use of the Na⁺/H⁺ ionophore monensin

(Sigma; 1 mM stock in methanol). The effect of the latter two manipulations on pH_i was monitored in platelets isolated and suspended in NaCl-Hepes buffer, pH 7.5, as described above and loaded with the fluorescent intracellular pH indicator biscarboxyethylcarboxyfluorescein (BCECF; HSC Research Development Corporation, Toronto, Canada) as described by Rink et al. [14]. Addition of 10 mM NH₄Cl to the extracellular medium induced a rapid increase in pH_i from 7.15 to about 7.7 and 10 µM monensin raised pH_i to the extracellular value of about pH 7.5 (not shown).

3. RESULTS

The effects of inhibiting Na^+/H^+ exchange or increasing pH_i on Ca^{2+} mobilization are summarized in table 1. Thrombin raised $[Ca^{2+}]_i$ at 140 mM Na_o^+ in both the absence and presence of Ca_o^{2+} . Replacement of Na_o^+ by choline led to a reduction of Ca^{2+} mobilization by 82 and 85% in the absence or presence of Ca_o^{2+} , respectively. A substantial inhibition of the thrombin-induced in-

Table 1

Effects of blocking Na⁺/H⁺ exchange or cytoplasmic alkalinization on the thrombin-induced rise in cytosolic free calcium in human platelets

	[Ca ²⁺] _i (nM) at 0 Ca _o ²⁺ (2 mM EGTA)	[Ca ²⁺] _i (nM) at 1 mM Ca _o ²⁺
140 mM Na _o ⁺	100 ± 15 (8)	786 ± 212 (9)
140 mM choline	$18 \pm 6 (7)$	114 ± 13 (11)
140 mM Na _o ⁺ + 60 μM EIPA	21 ± 8 (8)	312 ± 55 (7)
140 mM Na _o ⁺ + 60 μM EIPA + 10 μM monensin	84 ± 15 (9)	701 ± 112 (10)
140 mM Na _o ⁺ + 10 mM NH ₄ Cl	212 ± 60 (15)	N.D.

The change in the concentration of cytosolic free Ca²⁺, [Ca²⁺]_i, upon stimulation by 0.2 U/ml thrombin was measured in human platelets loaded with the fluorescent dye quin2. For experimental details see section 2. Values represent means (± SD); the number of experiments, performed in at least 3 different preparations, is given in parentheses. N.D., not determined

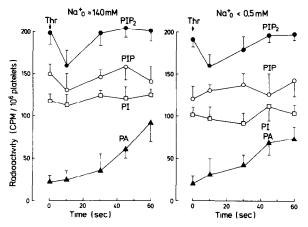


Fig.1. Effect of Na+ removal on the turnover of 32Plabelled phospholipids in thrombin-stimulated platelets. Left panel: control, presence of 140 mM NaCl; right panel: NaCl replaced by choline chloride. Displayed is the radioactivity in the separated [32P]phospholipids at various times after addition of thrombin (0.2 U/ml). The symbols represent means (\pm) obtained in 6 different preparations. The radioactivity of the different phospholipid fractions was normalized to the average values of the corresponding metabolites before stimulation. Data were compared at 10, 30, 45, and 60 s for PIP2, and at 45 and 60 s for the other phospholipids by Student's t-test. Removal of Na+ did not affect the stimulus-induced changes in phospholipids (p > 0.05). (•) PIP₂, phosphatidylinositol 4,5-bisphosphate; (0) phosphatidylinositol 4-phosphate; (a) PI, phosphatidylinositol; (A) PA, phosphatidate.

crease in [Ca²⁺]_i was also observed after inhibition of Na⁺/H⁺ exchange by EIPA. This latter effect, however, was almost completely reversed when pH_i was artificially increased by the Na⁺/H⁺ ionophore monensin or by NH₄Cl (not shown). Cytoplasmic alkalinization by addition of NH₄Cl to the platelet suspension (final conc. 10 mM) did not affect [Ca²⁺]_i in unstimulated cells. In the presence of thrombin, however, the same treatment induced a 2-fold increase in [Ca²⁺]_i. Taken together, these findings suggest an important role of Na⁺/H⁺ exchange for Ca²⁺ mobilization from internal stores and also demonstrate that Na⁺/H⁺ exchange may control the influx of Ca²⁺ across the plasma membrane.

In order to investigate whether Na⁺/H⁺ exchange directly affected Ca²⁺ translocation or acted via mechanisms that were close to receptor activation, we measured the changes in ³²P-

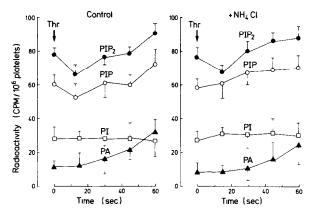


Fig.2. Effect of NH₄Cl on the thrombin-induced turnover of ³²P-labelled phospholipids. Left panel: control; right panel: addition of 10 mM NH₄Cl 2 min prior to activation by 0.2 U/ml thrombin. The symbols represent means (± SD) from 4 different experiments. For methods see section 2 and the legend to fig.1. The abbreviations are identical to those of fig.1.

labelled phosphoinositides which are early events in the sequence of stimulus-response coupling in thrombin-stimulated platelets. At 140 mM Na_o⁺, thrombin stimulation led to a fall in the radioactivity of the PIP₂ fraction and a subsequent formation of PA (fig.1). Inhibiting Na⁺/H⁺ exchange by removal of Na_o⁺ had no effect on the fall in PIP₂ and did not significantly reduce PA formation either (fig.1). At 140 mM Na_o⁺, amiloride (0.1–1 mM) had no effect on [³²P]polyphosphoinositide turnover (not shown). Similarly, exposure of platelets to 10 mM NH₄Cl neither influenced the hydrolytic cleavage of PIP₂ nor significantly altered PA production as compared with untreated controls (fig.2).

4. DISCUSSION

We have presented evidence that the cytoplasmic pH is a crucial factor in the control of stimulus-response coupling in platelets. An increase in pH_i is essential for thrombin-induced Ca^{2+} mobilization. It is unlikely that these observations are due to disturbances of Ca^{2+} homeostasis by removal of Na_0^+ or the presence of EIPA in unstimulated platelets, since (i) none of the experimental conditions shown in table 1 changed the resting levels of $[Ca^{2+}]_i$ (84 ± 11 nM; ± SD, n = 48), and (ii) addition of the Ca^{2+} ionophore ionomycin to platelets

suspended in Ca²⁺-free medium produced identical Ca2+ signals at normal and low Na₀+ or in the presence of EIPA (not shown) which indicates that the total amount of Ca2+ releasable from internal stores was unaffected. In addition, it has been demonstrated that the total platelet Ca²⁺ content is independent of Na₀⁺ [15]. We could also demonstrate that experimental conditions which either block the thrombin-induced rise in pHi or induce cytoplasmic alkalinization apparently do not interfere with the stimulus-induced breakdown of PIP₂ (figs 1 and 2). It appears reasonable, therefore, to assume that pH_i plays a role in rather late stages in the sequence that couples receptor occupancy to aggregation and secretion. One possible candidate is the IP₃-mediated Ca²⁺ release from internal storage sites. This idea finds strong support in recent findings by Brass and Joseph [3] who demonstrated that the IP₃-induced Ca²⁺ mobilization from platelet internal membranes can be significantly enhanced by increasing pHi from 6.9 to 7.4. An alternative possibility is that high pH_i retards the hydrolysis of IP₃. Evidence for this assumption, however, is lacking.

At present it is unknown how pH_i regulates the influx of Ca^{2+} across the plasma membrane. The plasma membrane of platelets lacks voltage-dependent Ca^{2+} channels [16] or a Na^+/Ca^{2+} exchanger [15]. Further work is required to determine how pH_i regulates Ca^{2+} transport across the plasma membrane.

ACKNOWLEDGEMENTS

We are indebted to Dr T. Friedrich and Dr G. Burckhardt (Max-Planck-Institut für Biophysik, Frankfurt, FRG) for supplying us with ethylisopropylamiloride. This study was supported in part by the Deutsche Forschungsgemeinschaft, grant no. Sche 46/5-1. One of us (W.S.) received a travel grant from the Beauftragte für die Pflege

und Förderung der Beziehungen zwischen den Hochschulen des Landes Nordrhein-Westfalen und des Königsreiches der Niederlande und des Königreiches Belgien.

REFERENCES

- [1] Agranoff, B.W., Murthy, P. and Seguin, E.B. (1983) J. Biol. Chem. 258, 2076-2078.
- [2] Authi, K.S. and Crawford, N. (1985) Biochem. J. 230, 247-253.
- [3] Brass, L.F. and Joseph, K.S. (1985) J. Biol. Chem. 260, 15172-15179.
- [4] Kaibuchi, K., Takai, Y., Sawamura, M., Hashijima, M., Fujikura, T. and Nishizuka, Y. (1983) J. Biol. Chem. 258, 6701-6704.
- [5] Siffert, W., Fox, G., Mückenhoff, K. and Scheid,P. (1984) FEBS Lett. 172, 272-274.
- [6] Horne, W.C., Norman, N.E., Schwartz, D.B. and Simons, E.R. (1981) Eur. J. Biochem. 120, 295-302.
- [7] Horne, W.C. and Simons, E.R. (1978) Thromb. Res. 13, 599-607.
- [8] Sweatt, J.D., Johnson, S.L., Cragoe, E.J. and Limbird, L.E. (1985) J. Biol. Chem. 260, 12910–12919.
- [9] Connolly, T.M. and Limbird, L.E. (1983) Proc. Natl. Acad. Sci. USA 80, 5320-5324.
- [10] Tsien, R.Y., Pozzan, T. and Rink, T.J. (1982) J. Cell. Biol. 94, 325-334.
- [11] Rink, T.J., Sanchez, A. and Hallam, T.J. (1983) Nature 305, 317-319.
- [12] Jolles, J., Zwiers, H., Dekker, A., Wirtz, K.W.A. and Gipsen, W.H. (1981) Biochem. J. 194, 283-291.
- [13] Vigne, P., Frelin, C., Cragoe, E.J. and Lazdunski, M. (1983) Biochem. Biophys. Res. Commun. 116, 86-90.
- [14] Rink, T.J., Tsien, R.Y. and Pozzan, T. (1982) J. Cell. Biol. 95, 189-196.
- [15] Brass, L.F. (1984) J. Biol. Chem. 259, 12571-12575.
- [16] Doyle, V.M. and Rüegg, U.T. (1985) Biochem. Biophys. Res. Commun. 127, 161-167.